Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-515748

The impact of variants of concern (VoC) on SARS-CoV-2 viral dynamics remains poorly understood and essentially relies on observational studies subject to various sorts of biases. In contrast, experimental models of infection constitute a powerful model to perform controlled comparisons of the viral dynamics observed with VoC and better quantify how VoC escape from the immune response. Here we used molecular and infectious viral load of 78 cynomolgus macaques to characterize in detail the effects of VoC on viral dynamics. We first developed a mathematical model that recapitulate the observed dynamics, and we found that the best model describing the data assumed a rapid antigen-dependent stimulation of the immune response leading to a rapid reduction of viral infectivity. When compared with the historical variant, all VoC except beta were associated with an escape from this immune response, and this effect was particularly sensitive for delta and omicron variant (p<10-6 for both). Interestingly, delta variant was associated with a 1.8-fold increased viral production rate (p=0.046), while conversely omicron variant was associated with a 14-fold reduction in viral production rate (p<10-6). During a natural infection, our models predict that delta variant is associated with a higher peak viral RNA than omicron variant (7.6 log10 copies/mL 95% CI 6.8 - 8 for delta; 5.6 log10 copies/mL 95% CI 4.8 - 6.3 for omicron) while having similar peak infectious titers (3.7 log10 PFU/mL 95% CI 2.4 - 4.6 for delta; 2.8 log10 PFU/mL 95% CI 1.9 - 3.8 for omicron). These results provide a detailed picture of the effects of VoC on total and infectious viral load and may help understand some differences observed in the patterns of viral transmission of these viruses.

2.
Houriiyah Tegally; James E. San; Matthew Cotten; Bryan Tegomoh; Gerald Mboowa; Darren P. Martin; Cheryl Baxter; Monika Moir; Arnold Lambisia; Amadou Diallo; Daniel G. Amoako; Moussa M. Diagne; Abay Sisay; Abdel-Rahman N. Zekri; Abdelhamid Barakat; Abdou Salam Gueye; Abdoul K. Sangare; Abdoul-Salam Ouedraogo; Abdourahmane SOW; Abdualmoniem O. Musa; Abdul K. Sesay; Adamou LAGARE; Adedotun-Sulaiman Kemi; Aden Elmi Abar; Adeniji A. Johnson; Adeola Fowotade; Adewumi M. Olubusuyi; Adeyemi O. Oluwapelumi; Adrienne A. Amuri; Agnes Juru; Ahmad Mabrouk Ramadan; Ahmed Kandeil; Ahmed Mostafa; Ahmed Rebai; Ahmed Sayed; Akano Kazeem; Aladje Balde; Alan Christoffels; Alexander J. Trotter; Allan Campbell; Alpha Kabinet KEITA; Amadou Kone; Amal Bouzid; Amal Souissi; Ambrose Agweyu; Ana V. Gutierrez; Andrew J. Page; Anges Yadouleton; Anika Vinze; Anise N. Happi; Anissa Chouikha; Arash Iranzadeh; Arisha Maharaj; Armel Landry Batchi-Bouyou; Arshad Ismail; Augustina Sylverken; Augustine Goba; Ayoade Femi; Ayotunde Elijah Sijuwola; Azeddine Ibrahimi; Baba Marycelin; Babatunde Lawal Salako; Bamidele S. Oderinde; Bankole Bolajoko; Beatrice Dhaala; Belinda L. Herring; Benjamin Tsofa; Bernard Mvula; Berthe-Marie Njanpop-Lafourcade; Blessing T. Marondera; Bouh Abdi KHAIREH; Bourema Kouriba; Bright Adu; Brigitte Pool; Bronwyn McInnis; Cara Brook; Carolyn Williamson; Catherine Anscombe; Catherine B. Pratt; Cathrine Scheepers; Chantal G. Akoua-Koffi; Charles N. Agoti; Cheikh Loucoubar; Chika Kingsley Onwuamah; Chikwe Ihekweazu; Christian Noel MALAKA; Christophe Peyrefitte; Chukwuma Ewean Omoruyi; Clotaire Donatien Rafai; Collins M. Morang'a; D. James Nokes; Daniel Bugembe Lule; Daniel J. Bridges; Daniel Mukadi-Bamuleka; Danny Park; David Baker; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshiabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Donald S. Grant; Donwilliams O. Omuoyo; Dorcas Maruapula; Dorcas Waruguru Wanjohi; Ebenezer Foster-Nyarko; Eddy K. Lusamaki; Edgar Simulundu; Edidah M. Ong'era; Edith N. Ngabana; Edward O. Abworo; Edward Otieno; Edwin Shumba; Edwine Barasa; EL BARA AHMED; Elmostafa EL FAHIME; Emmanuel Lokilo; Enatha Mukantwari; Erameh Cyril; Eromon Philomena; Essia Belarbi; Etienne Simon-Loriere; Etile A. Anoh; Fabian Leendertz; Fahn M. Taweh; Fares Wasfi; Fatma Abdelmoula; Faustinos T. Takawira; Fawzi Derrar; Fehintola V Ajogbasile; Florette Treurnicht; Folarin Onikepe; Francine Ntoumi; Francisca M. Muyembe; FRANCISCO NGIAMBUDULU; Frank Edgard ZONGO Ragomzingba; Fred Athanasius DRATIBI; Fred-Akintunwa Iyanu; Gabriel K. Mbunsu; Gaetan Thilliez; Gemma L. Kay; George O. Akpede; George E Uwem; Gert van Zyl; Gordon A. Awandare; Grit Schubert; Gugu P. Maphalala; Hafaliana C. Ranaivoson; Hajar Lemriss; Hannah E Omunakwe; Harris Onywera; Haruka Abe; HELA KARRAY; Hellen Nansumba; Henda Triki; Herve Alberic ADJE KADJO; Hesham Elgahzaly; Hlanai Gumbo; HOTA mathieu; Hugo Kavunga-Membo; Ibtihel Smeti; Idowu B. Olawoye; Ifedayo Adetifa; Ikponmwosa Odia; Ilhem Boutiba-Ben Boubaker; Isaac Ssewanyana; Isatta Wurie; Iyaloo S Konstantinus; Jacqueline Wemboo Afiwa Halatoko; James Ayei; Janaki Sonoo; Jean Bernard LEKANA-DOUKI; Jean-Claude C. Makangara; Jean-Jacques M. Tamfum; Jean-Michel Heraud; Jeffrey G. Shaffer; Jennifer Giandhari; Jennifer Musyoki; Jessica N. Uwanibe; Jinal N. Bhiman; Jiro Yasuda; Joana Morais; Joana Q. Mends; Jocelyn Kiconco; John Demby Sandi; John Huddleston; John Kofi Odoom; John M. Morobe; John O. Gyapong; John T. Kayiwa; Johnson C. Okolie; Joicymara Santos Xavier; Jones Gyamfi; Joseph Humphrey Kofi Bonney; Joseph Nyandwi; Josie Everatt; Jouali Farah; Joweria Nakaseegu; Joyce M. Ngoi; Joyce Namulondo; Judith U. Oguzie; Julia C. Andeko; Julius J. Lutwama; Justin O'Grady; Katherine J Siddle; Kathleen Victoir; Kayode T. Adeyemi; Kefentse A. Tumedi; Kevin Sanders Carvalho; Khadija Said Mohammed; Kunda G. Musonda; Kwabena O. Duedu; Lahcen Belyamani; Lamia Fki-Berrajah; Lavanya Singh; Leon Biscornet; Leonardo de Oliveira Martins; Lucious Chabuka; Luicer Olubayo; Lul Lojok Deng; Lynette Isabella Ochola-Oyier; Madisa Mine; Magalutcheemee Ramuth; Maha Mastouri; Mahmoud ElHefnawi; Maimouna Mbanne; Maitshwarelo I. Matsheka; Malebogo Kebabonye; Mamadou Diop; Mambu Momoh; Maria da Luz Lima Mendonca; Marietjie Venter; Marietou F Paye; Martin Faye; Martin M. Nyaga; Mathabo Mareka; Matoke-Muhia Damaris; Maureen W. Mburu; Maximillian Mpina; Claujens Chastel MFOUTOU MAPANGUY; Michael Owusu; Michael R. Wiley; Mirabeau Youtchou Tatfeng; Mitoha Ondo'o Ayekaba; Mohamed Abouelhoda; Mohamed Amine Beloufa; Mohamed G Seadawy; Mohamed K. Khalifa; Mohammed Koussai DELLAGI; Mooko Marethabile Matobo; Mouhamed Kane; Mouna Ouadghiri; Mounerou Salou; Mphaphi B. Mbulawa; Mudashiru Femi Saibu; Mulenga Mwenda; My V.T. Phan; Nabil Abid; Nadia Touil; Nadine Rujeni; Nalia Ismael; Ndeye Marieme Top; Ndongo Dia; Nedio Mabunda; Nei-yuan Hsiao; Nelson Borico Silochi; Ngonda Saasa; Nicholas Bbosa; Nickson Murunga; Nicksy Gumede; Nicole Wolter; Nikita Sitharam; Nnaemeka Ndodo; Nnennaya A. Ajayi; Noel Tordo; Nokuzola Mbhele; Norosoa H Razanajatovo; Nosamiefan Iguosadolo; Nwando Mba; Ojide C. Kingsley; Okogbenin Sylvanus; Okokhere Peter; Oladiji Femi; Olumade Testimony; Olusola Akinola Ogunsanya; Oluwatosin Fakayode; Onwe E. Ogah; Ousmane Faye; Pamela Smith-Lawrence; Pascale Ondoa; Patrice Combe; Patricia Nabisubi; Patrick Semanda; Paul E. Oluniyi; Paulo Arnaldo; Peter Kojo Quashie; Philip Bejon; Philippe Dussart; Phillip A. Bester; Placide K. Mbala; Pontiano Kaleebu; Priscilla Abechi; Rabeh El-Shesheny; Rageema Joseph; Ramy Karam Aziz; Rene Ghislain Essomba; Reuben Ayivor-Djanie; Richard Njouom; Richard O. Phillips; Richmond Gorman; Robert A. Kingsley; Rosemary Audu; Rosina A.A. Carr; Saad El Kabbaj; Saba Gargouri; Saber Masmoudi; Safietou Sankhe; Sahra Isse Mohamed; Salma MHALLA; Salome Hosch; Samar Kamal Kassim; Samar Metha; Sameh Trabelsi; Sanaa Lemriss; Sara Hassan Agwa; Sarah Wambui Mwangi; Seydou Doumbia; Sheila Makiala-Mandanda; Sherihane Aryeetey; Shymaa S. Ahmed; SIDI MOHAMED AHMED; Siham Elhamoumi; Sikhulile Moyo; Silvia Lutucuta; Simani Gaseitsiwe; Simbirie Jalloh; Soafy Andriamandimby; Sobajo Oguntope; Solene Grayo; Sonia Lekana-Douki; Sophie Prosolek; Soumeya Ouangraoua; Stephanie van Wyk; Stephen F. Schaffner; Stephen Kanyerezi; Steve AHUKA-MUNDEKE; Steven Rudder; Sureshnee Pillay; Susan Nabadda; Sylvie Behillil; Sylvie L. Budiaki; Sylvie van der Werf; Tapfumanei Mashe; Tarik Aanniz; Thabo Mohale; Thanh Le-Viet; Thirumalaisamy P. Velavan; Tobias Schindler; Tongai Maponga; Trevor Bedford; Ugochukwu J. Anyaneji; Ugwu Chinedu; Upasana Ramphal; Vincent Enouf; Vishvanath Nene; Vivianne Gorova; Wael H. Roshdy; Wasim Abdul Karim; William K. Ampofo; Wolfgang Preiser; Wonderful T. Choga; Yahaya ALI ALI AHMED; Yajna Ramphal; Yaw Bediako; Yeshnee Naidoo; Yvan Butera; Zaydah R. de Laurent; Ahmed E.O. Ouma; Anne von Gottberg; George Githinji; Matshidiso Moeti; Oyewale Tomori; Pardis C. Sabeti; Amadou A. Sall; Samuel O. Oyola; Yenew K. Tebeje; Sofonias K. Tessema; Tulio de Oliveira; Christian Happi; Richard Lessells; John Nkengasong; Eduan Wilkinson.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22273906

Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks. One-Sentence SummaryExpanding Africa SARS-CoV-2 sequencing capacity in a fast evolving pandemic.

3.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-459577

SARS-CoV-2 infection results in impaired interferon response in severe COVID-19 patients. However, how SARS-CoV-2 interferes with host immune response is incompletely understood. Here, we sequenced small RNAs from SARS-CoV-2-infected human cells and identified a micro-RNA (miRNA) encoded in a recently evolved region of the viral genome. We show that the virus-encoded miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer and they are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 employs a virus-encoded miRNA to hijack the host miRNA machinery and evade the interferon-mediated immune response.

4.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-21256690

BackgroundIn early January 2021, an outbreak of nosocomial cases of COVID-19 emerged in Western France, with RT-PCR tests repeatedly negative on nasopharyngeal samples but positive on lower respiratory tract samples. Whole genome sequencing (WGS) revealed a new variant, currently defining a novel SARS-CoV-2 lineage: B.1.616. In March, WHO classified this variant as under investigation (VUI). We analyzed the characteristics and outcomes of COVID-19 cases related to this new variant. MethodsClinical, virological, and radiological data were retrospectively collected from medical charts in the two hospitals involved. We enrolled patients with at least one of the following: i) positive SARS-CoV-2 RT-PCR on a respiratory sample; ii) seroconversion with anti-SARS-CoV-2 IgG/IgM; iii) suggestive symptoms and typical features of COVID-19 on chest CT scan. Cases were categorized as either: i) B.1.616; ii) variant of concern (VOC); iii) unknown. FindingsFrom January 1st to March 24th, 2021, 114 patients fulfilled the inclusion criteria: B.1.616 (n=34), VOC (n=32), and unknown (n=48). B.1.616-related cases were older than VOC-related cases (81 years [73-88], vs 73 years [67-82], P<0.05) and their first RT-PCR tests were less often positive (5/34, 15% vs 31/32, 97%, P<0.05). The B.1.616 variant was independently associated with severe disease (multivariable Cox model HR 4.2 [1.3- 13.5], P=0.018), and increased lethality (logrank test P=0.01): 28-day mortality 15/34 (44%) with B.1.616, vs. 5/32 (16%) for VOC, P=0.036. InterpretationWe report a nosocomial outbreak of COVID-19 cases related to a new variant, B.1.616, poorly detected by RT-PCR on nasopharyngeal samples, with high lethality. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSAmong the numerous SARS-CoV-2 variants described worldwide, only 3 are currently classified as Variant of Concern (VOC) by the WHO, since they are associated with either an increased risk in transmissibility, severity, or significant reduction in neutralization by antibodies: B.1.1.7, B.1.351 and P.1 (Pango lineage nomenclature). With the ongoing circulation of SARS-CoV-2 in many places worldwide, the emergence of new variants may reduce the efficacy of vaccines and jeopardize our prospects to control the pandemic. In early January 2021, an outbreak of cases highly suggestive of COVID-19 despite negative RT-PCR tests on repeated nasopharyngeal (NP) samples was reported in Western France, leading to several nosocomial clusters. Whole-genome sequencing (WGS) from lower respiratory tract samples identified a new lineage of SARS-CoV-2 virus, classified as B1.616. Consequently, the French public health agency (Sante publique France) and the WHO classified B.1.616 as variant under investigation (VUI). Added value of this studyOur observational study, conducted from January 1st to March 24th 2021 in the B.1.616 identified area, provides the first clinical and virological description of B.1.616-associated COVID-19. The 34 cases had clinical, biological and radiological findings in line with classical features of COVID-19, while RT-PCR tests on nasopharyngeal (NP) samples failed to detect SARS-CoV-2 in most patients. Indeed, this gold-standard test was positive in only 15% of the first tests in B.1.616-related COVID-19 patients. Of note, the diagnostic performance of RT-PCR tests was satisfactory on lower respiratory tract samples, suggesting that failure to detect B.1.616 on NP samples would be due to a viral load below the limit of detection in the upper respiratory tract, rather than to genomic mismatches between routine RT-PCR targets and this variant. In our cohort, B.1.616 was independently associated with worse clinical outcome, with high 28-day mortality (44%). Implications of all the available evidenceDiagnosis of B.1.616-related COVID-19 cases should not rely on RT-PCR tests on NP samples. In the epidemic area, strict infection control measures must be maintained as long as COVID-19 diagnosis is not ruled out, in order to limit nosocomial clusters and case fatality. Further studies are needed to confirm and investigate the association between genomic characteristics of B.1.616, and i) poor detection by RT-PCR tests on NP samples; ii) prognosis.

5.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-21256637

Many high-income countries have met the SARS-CoV-2 pandemic with overwhelming sequencing resources and have identified numerous distinct lineages, including some with notably altered biology. Over a year into the pandemic following unprecedented reductions in worldwide human mobility, distinct introduced lineages of SARS-CoV-2 without sequenced antecedents are increasingly discovered in high-income countries as a result of ongoing SARS-CoV-2 genomic surveillance initiatives. We here describe one such SARS-CoV-2 lineage, carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69{Delta}, Y144{Delta}, and LLA241/243{Delta}. This lineage - designated B.1.620 - is known to circulate in Lithuania and has now been found in several European states, but also in increasing numbers in central Africa owing to important recent increases in genome sequencing efforts on the continent. We provide evidence of likely ongoing local transmission of B.1.620 in Lithuania, France, Germany, Spain, Belgium and the Central African Republic. We describe the suite of mutations this lineage carries, its potential to be resistant to neutralising antibodies, travel histories for a subset of the European cases, and evidence of local B.1.620 transmission in Europe. We make a case for the likely Central African origin of this lineage by providing travel records as well as the outcomes of carefully crafted phylogenetic and phylogeographic inference methodologies, the latter of which is able to exploit individual travel histories recorded for infected travellers having entered different European countries.

6.
Eduan Wilkinson; Marta Giovanetti; Houriiyah Tegally; James E San; Richard Lessels; Diego Cuadros; Darren P Martin; Abdel-Rahman N Zekri; Abdoul Sangare; Abdoul Salam Ouedraogo; Abdul K Sesay; Adnene Hammami; Adrienne A Amuri; Ahmad Sayed; Ahmed Rebai; Aida Elargoubi; Alpha K Keita; Amadou A Sall; Amadou Kone; Amal Souissi; Ana V Gutierrez; Andrew Page; Arnold Lambisia; Arash Iranzadeh; Augustina Sylverken; Azeddine Ibrahimi; Bourema Kouriba; Bronwyn Kleinhans; Beatrice Dhaala; Cara Brook; Carolyn Williamson; Catherine B Pratt; Chantal G Akoua-Koffi; Charles Agoti; Collins M Moranga; James D Nokes; Daniel J Bridges; Daniel L Bugembe; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Dorcas Maruapula; Edith N Ngabana; Eddy Lusamaki; Edidah Moraa; Elmostafa El Fahime; Emerald Jacob; Emmanuel Lokilo; Enatha Mukantwari; Essia Belarbi; Etienne Simon-Loriere; Etile A Anoh; Fabian Leendertz; Faida Ajili; Fares Wasfi; Faustinos T Takawira; Fawzi Derrar; Feriel Bouzid; Francisca M Muyembe; Frank Tanser; Gabriel Mbunsu; Gaetan Thilliez; Gert van Zyl; Grit Schubert; George Githinji; Gordon A Awandare; Haruka Abe; Hela H Karray; Hellen Nansumba; Hesham A Elgahzaly; Hlanai Gumbo; Ibtihel Smeti; Ikhlass B Ayed; Imed Gaaloul; Ilhem B.B. Boubaker; Inbal Gazy; Isaac Ssewanyana; Jean B Lekana-Douk; Jean-Claude C Makangara; Jean-Jacques M Tamfum; Jean M Heraud; Jeffrey G Shaffer; Jennifer Giandhari; Jingjing Li; Jiro Yasuda; Joana Q Mends; Jocelyn Kiconco; Jonathan A Edwards; John Morobe; John N Nkengasong; John Gyapong; John T Kayiwa; Jones Gyamfi; Jouali Farah; Joyce M Ngoi; Joyce Namulondo; Julia C Andeko; Julius J Lutwama; Justin O Grady; Kefenstse A Tumedi; Khadija Said; Kim Hae-Young; Kwabena O Duedu; Lahcen Belyamani; Lavanya Singh; Leonardo de O. Martins; Madisa Mine; Mahmoud el Hefnawi; Mahjoub Aouni; Maha Mastouri; Maitshwarelo I Matsheka; Malebogo Kebabonye; Manel Turki; Martin Nyaga; Matoke Damaris; Matthew Cotten; Maureen W Mburu; Maximillian Mpina; Michael R Wiley; Mohamed A Ali; Mohamed K Khalifa; Mohamed G Seadawy; Mouna Ouadghiri; Mulenga Mwenda; Mushal Allam; My V.T. Phan; Nabil Abid; Nadia Touil; Najla Kharrat; Nalia Ismael; Nedio Mabunda; Nei-yuan Hsiao; Nelson Silochi; Ngonda Saasa; Nicola Mulder; Patrice Combe; Patrick Semanda; Paul E Oluniyi; Paulo Arnaldo; Peter K Quashie; Reuben Ayivor-Djanie; Philip A Bester; Philippe Dussart; Placide K Mbala; Pontiano Kaleebu; Richard Njouom; Richmond Gorman; Robert A Kingsley; Rosina A.A. Carr; Saba Gargouri; Saber Masmoudi; Samar Kassim; Sameh Trabelsi; Sami Kammoun; Sanaa Lemriss; Sara H Agwa; Sebastien Calvignac-Spencer; Seydou Doumbia; Sheila M Madinda; Sherihane Aryeetey; Shymaa S Ahmed; Sikhulile Moyo; Simani Gaseitsiwe; Edgar Simulundu; Sonia Lekana-Douki; Soumeya Ouangraoua; Steve A Mundeke; Sumir Panji; Sureshnee Pillay; Susan Engelbrecht; Susan Nabadda; Sylvie Behillil; Sylvie van der Werf; Tarik Aanniz; Tapfumanei Mashe; Thabo Mohale; Thanh Le-Viet; Tobias Schindler; Upasana Ramphal; Magalutcheemee Ramuth; Vagner Fonseca; Vincent Enouf; Wael H Roshdy; William Ampofo; Wolfgang Preiser; Wonderful T Choga; Yaw Bediako; Yenew K. Tebeje; Yeshnee Naidoo; Zaydah de Laurent; Sofonias K Tessema; Tulio de Oliveira.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-21257080

The progression of the SARS-CoV-2 pandemic in Africa has so far been heterogeneous and the full impact is not yet well understood. Here, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations, predominantly from Europe, which diminished following the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1 and C.1.1. Although distorted by low sampling numbers and blind-spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a breeding ground for new variants.

7.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-21253653

The SARS-CoV-2 pandemic has led to an unprecedented daily use of molecular RT-PCR tests. These tests are interpreted qualitatively for diagnosis, and the relevance of the test result intensity, i.e. the number of amplification cycles (Ct), is debated because of strong potential biases. We analyze a national database of tests performed on more than 2 million individuals between January and November 2020. Although we find Ct values to vary depending on the testing laboratory or the assay used, we detect strong significant trends with patient age, number of days after symptoms onset, or the state of the epidemic (the temporal reproduction number) at the time of the test. These results suggest that Ct values can be used to improve short-term predictions for epidemic surveillance.

8.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-436013

Receptor recognition is a major determinant of viral host range, infectivity and pathogenesis. Emergences have been associated with serendipitous events of adaptation upon encounters with novel hosts, and the high mutation rate of RNA viruses may explain their frequent host shifts. SARS-CoV-2 extensive circulation in humans results in the emergence of variants, including variants of concern (VOCs) with diverse mutations notably in the spike, and increased transmissibility or immune escape. Here we show that, unlike the initial and Delta variants, the three VOCs bearing the N501Y mutation can infect common laboratory mice. Contact transmission occurred from infected to naive mice through two passages. This host range expansion likely results from an increased binding of the spike to the mouse ACE2. Together with the observed contact transmission, it raises the possibility of wild rodent secondary reservoirs enabling the emergence of new variants.

9.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-430472

SARS-CoV-2 B.1.1.7 and B.1.351 variants emerged respectively in United Kingdom and South Africa and spread in many countries. Here, we isolated infectious B.1.1.7 and B.1.351 strains and examined their sensitivity to anti-SARS-CoV-2 antibodies present in sera and nasal swabs, in comparison with a D614G reference virus. We established a novel rapid neutralization assay, based on reporter cells that become GFP+ after overnight infection. B.1.1.7 was neutralized by 79/83 sera from convalescent patients collected up to 9 months post symptoms, almost similar to D614G. There was a mean 6-fold reduction in titers and even loss of activity against B.1.351 in 40% of convalescent sera after 9 months. Early sera from 19 vaccinated individuals were almost as potent against B.1.1.7 but less efficacious against B.1.351, when compared to D614G. Nasal swabs from vaccine recipients were not neutralizing, except in individuals who were diagnosed COVID-19+ before vaccination. Thus, faster-spreading variants acquired a partial resistance to humoral immunity generated by natural infection or vaccination, mostly visible in individuals with low antibody levels.

10.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-20249038

BackgroundThe systemic antibody responses to SARS-CoV-2 in COVID-19 patients has been extensively studied. However, much less is known about the mucosal responses in the upper airways at the site of initial SARS-CoV-2 replication. Local antibody responses in the nasopharyngeal epithelium, that are likely to determine the course of infection, have not been analysed so far nor their correlation with antibody responses in serum. MethodsThe IgG and IgA antibody responses were analysed in the plasma as well as in nasopharyngeal swabs (NPS) from the first four COVID-19 patients confirmed by RT-qPCR in France. Two were pauci-symptomatic while two developed severe disease. Taking advantage of a comprehensive series of plasma and nasopharyngeal samples, we characterized their antibody profiles from the second week post symptoms onset, by using an in-house ELISA to detect anti-SARS-CoV-2 Nucleoprotein (N) IgG and IgA. ResultsAnti-N IgG and IgA antibodies were detected in the NPS of severe patients. Overall, the levels of IgA and IgG antibodies in plasma and NPS appeared specific to each patient. ConclusionsAnti-N IgG and IgA antibodies are detected in NPS, and their levels are related to antibody levels in plasma. The two patients with severe disease exhibited different antibody profiles that may reflect different disease outcome. For the pauci-symptomatic patients, one showed a low anti-N IgG and IgA response in the plasma only, while the other one did not exhibit overt serological response.

11.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-20194860

Objective: We aimed to estimate the risk of infection in Healthcare workers (HCWs) following a high-risk exposure without personal protective equipment (PPE). Methods: We conducted a prospective cohort in HCWs who had a high-risk exposure to SARS-CoV-2-infected subject without PPE. Daily symptoms were self-reported for 30 days, nasopharyngeal swabs for SARS-CoV-2 RT-PCR were performed at inclusion and at days 3, 5, 7 and 12, SARS-CoV-2 serology was assessed at inclusion and at day 30. Confirmed infection was defined by positive RT-PCR or seroconversion, and possible infection by one general and one specific symptom for two consecutive days. Results: Between February 5th and May 30th, 2020, 154 HCWs were enrolled within 14 days following one high-risk exposure to either a hospital patient (70/154; 46.1%) and/or a colleague (95/154; 62.5%). At day 30, 25.0% had a confirmed infection (37/148; 95%CI, 18.4%; 32.9%), and 43.9% (65/148; 95%CI, 35.9%; 52.3%) had a confirmed or possible infection. Factors independently associated with confirmed or possible SARS-CoV-2 infection were being a pharmacist or administrative assistant rather than being from medical staff (adjusted OR (aOR)=3.8, CI95%=1.3;11.2, p=0.01), and exposure to a SARS-CoV-2-infected patient rather than exposure to a SARS-CoV-2-infected colleague (aOR=2.6, CI95%=1.2;5.9, p=0.02). Among the 26 HCWs with a SARS-CoV-2-positive nasopharyngeal swab, 7 (26.9%) had no symptom at the time of the RT-PCR positivity. Conclusions: The proportion of HCWs with confirmed or possible SARS-CoV-2 infection was high. There were less occurrences of high-risk exposure with patients than with colleagues, but those were associated with an increased risk of infection.

12.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-20142596

BackgroundChildren have a lower rate of COVID-19, potentially related to cross-protective immunity conferred by seasonal coronaviruses (HCoVs). We tested if prior infections with seasonal coronaviruses impacted SARS-CoV-2 infections and related Multisystem Inflammatory Syndrome (MIS). MethodsThis cross-sectional observational study in Paris hospitals enrolled 739 pauci or asymptomatic children (HOS group) plus 36 children with suspected MIS (MIS group). Prevalence, antigen specificity and neutralizing capability of SARS-CoV-2 antibodies were tested. Antibody frequency and titres against Nucleocapsid (N) and Spike (S) of the four seasonal coronaviruses (NL63, HKU1, 229E, OC43) were measured in a subset of seropositive patients (54 SARS-CoV-2 (HOS-P subgroup) and 15 MIS (MIS-P subgroup)), and in 118 matched SARS-CoV-2 seronegative patients (CTL subgroup). FindingsSARS-CoV-2 mean prevalence rate in HOSP children was 11.7% from April 1 to June 1. Neutralizing antibodies were found in 55{middle dot}6% of seropositive children, and their relative frequency increased with time (up to 100 % by mid-May). A majority of MIS children (25/36) were SARS-CoV-2 seropositive, of which all tested (n=15) had neutralizing antibodies. On average, seropositive MIS children had higher N and S1 SARS-CoV-2 titres as compared to HOS children. Patients from HOS-P, MIS-P, and CTL subgroups had a similar prevalence of antibodies against the four seasonal HCoVs (66{middle dot}9 -100%). The level of anti-SARS-CoV-2 antibodies was not significantly different in children who had prior seasonal coronavirus infection. InterpretationPrior infection with HCoVs does not prevent SARS-CoV-2 infection and related MIS in children. Children develop neutralizing antibodies after SARS-CoV-2 infection. Evidence before this studyChildren seem to be less likely affected by SARS-CoV-2 infection and clinical course of COVID-19 is less severe than in adults. As those asymptomatic or mildly symptomatic children are underdiagnosed and their viral loads are comparable to those of adults, they may act as an asymptomatic reservoir for the spread of the virus. One explanation of the difference between the adult and the pediatric infectious profile might be that infection with seasonal human coronaviruses, which is very frequent from a very young age, could lead to cross protective immunity. We searched in PubMed, MedRxiv and BioRxiv for publications from inception to June 15, 2020, using the terms "COVID-19, SARS-CoV-2, children, serology, Kawasaki, Corona Virus". Added value of this studySARS-CoV-2 mean prevalence rate was 11.7% from April 1 to June 1 and neutralizing antibodies were found in 55% of the tested seropositive children. Among patients with a Multisystem Inflammatory Syndrome, Kawasaki-like disease, 70% were SARS-CoV-2 seropositive and had neutralizing antibodies. COVID-19 and MIS attack rates, and anti-SARS-CoV-2 antibodies titres were not significantly impacted by prior seasonal coronavirus infection. Implications of all the available evidencePrior infection by seasonal coronaviruses does not prevent SARS-CoV-2 infection and associated Multisystem Inflammatory Syndrome in children As antibodies against seasonal coronaviruses are very frequent and as these viruses circulate efficiently in human populations every winter, our results question to what extent the concept of herd immunity based on circulating antibodies can be applied to seasonal coronaviruses and possibly SARS-CoV-2.

13.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-20119925

France was one of the first countries to be reached by the COVID-19 pandemic. Here, we analyse 196 SARS-Cov-2 genomes collected between Jan 24 and Mar 24 2020, and perform a phylodynamics analysis. In particular, we analyse the doubling time, reproduction number ([R]t) and infection duration associated with the epidemic wave that was detected in incidence data starting from Feb 27. Different models suggest a slowing down of the epidemic in Mar, which would be consistent with the implementation of the national lock-down on Mar 17. The inferred distributions for the effective infection duration and[R] t are in line with those estimated from contact tracing data. Finally, based on the available sequence data, we estimate that the French epidemic wave originated between mid-Jan and early Feb. Overall, this analysis shows the potential to use sequence genomic data to inform public health decisions in an epidemic crisis context and calls for further analyses with denser sampling.

14.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-20068858

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their antibody response profile. Here, we performed a pilot study to assess the levels of anti-SARS-CoV-2 antibodies in samples taken from 491 pre-epidemic individuals, 51 patients from Hopital Bichat (Paris), 209 pauci-symptomatic individuals in the French Oise region and 200 contemporary Oise blood donors. Two in-house ELISA assays, that recognize the full-length nucleoprotein (N) or trimeric Spike (S) ectodomain were implemented. We also developed two novel assays: the S-Flow assay, which is based on the recognition of S at the cell surface by flow-cytometry, and the LIPS assay that recognizes diverse antigens (including S1 or N C-terminal domain) by immunoprecipitation. Overall, the results obtained with the four assays were similar, with differences in sensitivity that can be attributed to the technique and the antigen in use. High antibody titers were associated with neutralisation activity, assessed using infectious SARS-CoV-2 or lentiviral-S pseudotypes. In hospitalized patients, seroconversion and neutralisation occurred on 5-14 days post symptom onset, confirming previous studies. Seropositivity was detected in 29% of pauci-symptomatic individuals within 15 days post-symptoms and 3 % of blood of healthy donors collected in the area of a cluster of COVID cases. Altogether, our assays allow for a broad evaluation of SARS-CoV2 seroprevalence and antibody profiling in different population subsets.

15.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-059576

Following the emergence of coronavirus disease (COVID-19) in Wuhan, China in December 2019, specific COVID-19 surveillance was launched in France on January 10, 2020. Two weeks later, the first three imported cases of COVID-19 into Europe were diagnosed in France. We sequenced 97 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from samples collected between January 24 and March 24, 2020 from infected patients in France. Phylogenetic analysis identified several early independent SARS-CoV-2 introductions without local transmission, highlighting the efficacy of the measures taken to prevent virus spread from symptomatic cases. In parallel, our genomic data reveals the later predominant circulation of a major clade in many French regions, and implies local circulation of the virus in undocumented infections prior to the wave of COVID-19 cases. This study emphasizes the importance of continuous and geographically broad genomic sequencing and calls for further efforts with inclusion of asymptomatic infections.

16.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-029090

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, in 2019, is responsible for the COVID-19 pandemic. It is now accepted that the wild fauna, probably bats, constitute the initial reservoir of the virus, but little is known about the role pets can play in the spread of the disease in human communities, knowing the ability of SARS-CoV-2 to infect some domestic animals. We tested 21 domestic pets (9 cats and 12 dogs) living in close contact with their owners (belonging to a veterinary community of 20 students) in which two students tested positive for COVID-19 and several others (n = 11/18) consecutively showed clinical signs (fever, cough, anosmia, etc.) compatible with COVID-19 infection. Although a few pets presented many clinical signs indicative for a coronavirus infection, no animal tested positive for SARS-CoV-2 by RT-PCR and no antibodies against SARS-CoV-2 were detectable in their blood using an immunoprecipitation assay. These original data can serve a better evaluation of the host range of SARS-CoV-2 in natural environment exposure conditions.

...